
16

TCP Connection Latency: TCP is a connection based, reliable, byte stream oriented protocol. As

part of this reliability, a connection must be established before any data may transfer. The connection must

be established by a “three way had shake,” an exchange of packets when the client attempts to connect to

the server. The benchmark times the creation and connection of a TCP/IP socket to a remote host. Care is

taken in that time does not include any other overhead.

6.6.2.6 File System Latency

File system latency is defined as the time it takes to create or delete a zero length file. The

benchmark creates 1000, zero to 10K byte sized files, and then deletes them. DAISy and HEAT results are

in Table 16.

file system, size = 0K
(lat_fs)

System creation removal

DAISY systems
FreeBSD/i586 (p5-90) 50 120

HEAT systems
DEC Alpha 44 88
HP 9000/735 24 30
IBM RS6000 59 61
SUN SS10 29 70
SGI IRIX 58 67

Table 16. lat_fs results (microseconds).
6.6.2.7 Page Fault Latency

System page fault
(lat_pagefault)

DAISY systems
FreeBSD/i586 (p5-90) 26

HEAT systems
DEC Alpha 16592
HP 9000/735 22020
IBM RS6000 7464
SUN SS10 107979
SGI IRIX 21361

Table 17. lat_pagefault results (microseconds).
Page fault latency is measures how fast the file system can pagefault in a page that is not in

memory. For the HEAT systems the file system is NFS mounted, therefore this test measures the cost of

going across NFS.

6.6.2.8 Memory Mapping Latency

Memory mapping is an alternative to traditional read and write interfaces. It is the process to
making a file part of a processes address space, allowing direct access to the file’s pages. Memory

17

mapping is extensively used for linking in shared libraries at run time. The lat_mmap benchmark measures
the speed, at which mappings can be created as well as removed.

memory
mapping
(lat_mmap)

System 4MB

DAISY systems
FreeBSD/i586 (p5-90) 160

HEAT systems
DEC Alpha 117
HP 9000/735 100
IBM RS6000 270
SUN SS10 148
SGI IRIX 600

Table 18. lat_mmap results (microseconds).

6.7 Bonnie: Disk performance benchmark

The Bonnie [24] disk performance benchmark measures the local disk performance. Table 19

 shows the DAISy and HEAT disk performance benchmarks for sequential output on a per character and a
block size measure. The benchmark size was 100MB.

Sequential Output Sequential Input Random
Per Char Block Rewrite Per Char Block Seeks

Machine Mb K/sec %cpu K/sec %cpu K/sec %cpu K/sec %cpu K/sec %cpu /sec %cpu

P5-90 100 2059 93.6 2429 57.6 971 18.7 1302 49.6 2280 29.9 156.5 13.9
DEC Alpha 100 3425 95.6 3491 14.5 1538 6.8 3497 96.9 3574 8.6 101.6 3.6
HP 735 100 1568 60.6 1492 31.7 610 4.5 1492 56.9 1530 7.5 141 6
IBM RS6K 100 1459 96.5 1558 13.3 530 6.4 1123 89.2 1939 13.2 44.8 6
SGI IRIX 100 1767 95.4 3307 26.5 1320 13.5 1336 81.6 2806 15.8 62.9 5
SUN SS10 100 1503 71.7 1552 15.4 523 8.4 1415 81.9 2275 20.5 71.9 6.6

Table 19. Bonnie results (100MB benchmark size).

6.8 Netperf suite: A network performance benchmark

Netperf [25] is a suite of benchmarks used to measure various aspects of networking performance

and designed around the client/server model. The primary focus is on bulk data transfer and

request/response performance using either TCP or UDP and the Berkeley Sockets interface. All

benchmarks are run for an elapsed time of ~60 seconds. The various Netperf performance benchmarks fall

into two categories: (a) stream, and (b) request/response.

The most common use of the Netperf suite is measuring bulk data transfer performance. This is

referred to as “stream” or “unidirectional stream” performance. Basically these tests measure how fast one

system can send data to another and/or how fast that other system can receive it. The “stream” scripts that

were run to produce the results include: tcp_range_script, tcp_stream_script, and udp_stream_script.

Netperf request/response performance is quoted as “transactions/sec” for a given request and

response size. A transaction is defined as the exchange of a single request and a single response. From a

18

transaction rate, one can infer one way and round trip average latency. The “request/response” scripts that

were run include: tcp_rr_script and udp_rr_script.

As mentioned above, Netperf is based around the client/server model. Therefore, there are two

executables: (a) Netperf, and (b) netserver. The netserver program will be invoked at the server node, and

the Netperf program will be invoked at the client node. When Netperf is executed, the first thing that will

happen is an establishment of control to the remote host. This connection is used to pass test configuration

information and results to and from the remote system. Regardless of the type of test being run, the control

connection will be a TCP sockets connection. Next a separate connection is opened using the APIs and

appropriate protocols for the test, and the test will be run. While the test is being run there is no traffic on

the original control connection..

The results below from the DAISy and HEAT clusters will be condensed, but are in full in the

appendices. It should be noted that results are from the original scripts that come from the Netperf http site.

6.8.1 Stream

6.8.1.1 TCP Range

tcp_range_script is an implementation of the stream benchmark over TCP. The local send size

ranges from 1 to 65536 bytes with the local/remote send and receive socket buffer sizes of each set to

32768 bytes. With to send and receive socket buffer sizes remaining constant, the output shows the

throughput (Mb/s) as a function of range (bytes). For the results in Table 20: recv & send socket size =

32768 bytes, send message size = 65536 bytes.

6.8.1.2 TCP Stream

tcp_stream_script is an implementation of the stream benchmark over TCP The local send size

ranges from 4096 to 32768 bytes with the local/remote send and receive socket buffer sizes of each ranging

from 8102 to 57344 bytes. With the send and receive socket buffer sizes not remaining constant, the output

shows throughput (Mb/s)t as a function of range (bytes). For the results in Table 20: recv & send socket

size = 57344, send message size = 32768.

6.8.1.3 UDP Stream

udp_stream_script is an implementation of the stream benchmark over UDP. The difference

between udp_stream and tcp_stream is that the send size cannot be larger than the smaller of the local and

19

remote socket buffer sizes. The local send size ranges from 64 to 1472 bytes with the local/remote send ad

receive socket buffer sizes of each remain constant at 32768 bytes. With the send and receive socket buffer

sizes remaining constant, the output shows throughput (Mb/s), as a function of range (bytes) for both send

and receive. For the results in Table 20: socket size = 32768, message size = 1472.

UDP
stream

System Network TCP range TCP stream send receive

DAISY systems
FreeBSD/i586 (p5-90) 10baseT 5.38 5.19 5.73 5.73
FreeBSD/i586 (p5-90) 100baseT 50.06 50.64 68.5 35.28

HEAT systems
DEC Alpha fddi 79.95 85.87 89.23 37.14
HP 9000/735 fddi 71.53 79.31 87.38 52.18
SGI IRIX fddi 60.53 71.08 69.66 11.45

Table 20. tcp_range_script, tcp_stream_script, udp_stream_script results (Mb/s).
6.8.2 Request/Response

6.8.2.1 TCP Request/Response

tcp_rr_script is an implementation of the request/response benchmark over TCP. The

request/response sizes are varied with the local/remote send and receive socket buffer sizes of each being

the default of that particular system. With the local/remote send and receive socket buffer sizes remaining

constant (the default), the output shows performance (transactions/s) as a function of request/response sizes

(bytes). For the results in Table 21: send & recv socket = default bytes, request/resp. size = 1/1.

6.8.2.2 UDP Request/Response

udp_rr_script is an implementation of the request/response benchmark over UDP. The

request/response sizes are varied with the local/remote send and receive socket buffer sizes of each being

the default of that particular system. With the local/remote send and receive socket buffer sizes remaining

constant (the default), the output shows performance (transactions/s) as a functions of request/response

sizes (bytes).). For the results in Table 21: send & recv socket = default bytes, request/resp. size = 1/1.

20

System Network TCP request/response UDP request/response

DAISY systems
FreeBSD/i586 (p5-90) 10baseT 1331 1659
FreeBSD/i586 (p5-90) 100baseT 1638 2096

HEAT systems
DEC Alpha fddi 1772 1937
HP 9000/735 fddi 2423 2473
SGI IRIX fddi 993 34

Table 21. tcp_rr_script, udp_rr_script results (transactions/s).

6.9 The PVM Timing Example

The PVM timing example [26] is a simple program used to illustrate how to measure network

bandwidth and latency under PVM. It is a part of the example programs that are included in the PVM

distribution. Not only is it a good I/O performance benchmark, but is a good benchmark for testing out

PVM.

System Network PVM timing ex.

DAISY systems
FreeBSD/i586 (p5-90) 10baseT 0.695
FreeBSD/i586 (p5-90) 100baseT 5.284

HEAT systems
DEC Alpha fddi 8.242
HP 9000/735 fddi 9.5
SGI IRIX fddi 6.66

Table 22. PVM timing example results (avg. bytes/microseconds).

6.10 NFS Performance

Measuring NFS performance requires measuring both client and server performance. Table 23

shows NFS server performance using the Bonnie benchmark [24]. The Bonnie benchmark was run on a

client node to the user home directory file system on the master node d-00, using the DAISy 10BASE-2

operational network.

The NFS client performance was measured by copying a large file from the master node to
/dev/null on the client system. For an 11MB file the best rate measured at 602KB/s.

Sequential Output Sequential Input Random
Per Char Block Rewrite Per Char Block Seeks

Machine Mb K/sec %cpu K/sec %cpu K/sec %cpu K/sec %cpu K/sec %cpu /sec %cpu

P5-90 100 131 4.5 128 1.1 12 0.3 660 24.4 571 4.7 25.4 3.8
DEC Alpha 100 519 13.6 756 3.4 350 1.7 1065 27 1201 2.6 99.2 5.2
HP 735 100 645 25.4 679 11.9 330 2.3 835 31.6 1032 4.9 106.6 4.8
IBM RS6K 100 562 38.9 692 8.2 289 5 405 33.5 1440 11.6 35.4 2.9
SGI IRIX 100 258 16.6 287 3.4 188 6 174 14.4 425 7.8 26.6 5.8
SUN SS10 100 407 20.5 581 8.1 252 6 463 27.5 615 6.3 47 8.3

Table 23. Bonnie NFS Server Performance results (100MB benchmark size).

21

6.11 NAS Parallel Benchmarks 1.0, PVM versions

The NAS Parallel Benchmarks 1.0 (NPB 1.0) [10], [27] consisted of eight benchmark problems.

Five of these were kernel benchmarks and three were simulated computational fluid dynamics (CFD)

applications. We obtained the PVM versions of the NPB1.0 from the HENSA UNIX Parallel Archive at

the Internet URL address http://www.hensa.ac.uk/parallel/environments/pvm3/NAS-benchmarks/.

Unfortunately, only one of the eight benchmarks were able to run in class A mode on the DAISy cluster.

This was the “embarrassingly parallel” benchmark EP. The remaining NPB 1.0 PVM benchmarks were

able to compile and run successfully on the DAISy and HEAT machines in sample mode. These will not

be discussed here, but the appendix contains these results. As a note, the recently published NPB 2.0 [7]

benchmarks running under MPI have run semi-successfully on DAISy and the results are within this paper.

6.11.1 Kernel EP

Briefly, Kernel EP executes 2^28 iterations of a loop in which a pair of random numbers are

generated and tested for whether Gaussian random deviates can be made from them according to a specific

scheme. The number of pairs of the Gaussian’s in 10 successive square annuli are tabulated. The

psudorandom number generator used in this , and in all NAS benchmarks which call for random numbers,

is of the linear congruential recursion type. This kernel is viewed and named as an “embarrassingly

parallel” application. In other words, improved throughput rather than turn around time. Based on the

partitionability of the problem, no data or functional dependencies are incurred, and there is little or no

communication between processors.

Figure 18 shows the scalability of the EP Kernel benchmark on the DAISy cluster. Note that the

time it takes to execute the benchmark on one processor is almost exactly fifteen time slower than it would

be to execute the benchmark on 15 processors, hence, “embarrassingly parallel”. Table 24 shows the

results from the DAISy and HEAT clusters using 8 nodes each.

22

size = 2^28 Benchmark time (sec)
of processors p5-90, 100Mb/s sw

15 287.97
14 307.83
13 331.45
12 358.17
11 391.82
10 430.70
9 481.27
8 540.89
7 616.46
6 718.62
5 865.28
4 1076.66
3 1440.13
2 2152.87
1 4304.07

NAS Parallel Benchmarks
(Kernel EP)

be nc hma rk size N=2 2̂ 8

0

1000

2000

3000

4000

5000

0 5 10 15

of processors

se
co

nd
s

p5-90,
100Mb/s sw

Figure 18. Kernel EP results on 1 to 15 DAISy nodes.

System Network Kernel EP

DAISY systems
FreeBSD/i586 (p5-90) 10baseT 537
FreeBSD/i586 (p5-90) 100baseT 541

HEAT systems
DEC Alpha fddi 408
IBM RS6K fddi 775
SGI IRIX fddi 1193

